
doi: 10.5244/c.25.61
In dimensionality reduction most methods aim at preserving one or a few properties of the original space in the resulting embedding. As our results show, preserving the sparse representation of the signals from the original space in the (lower) dimensional projected space is beneficial for several benchmarks (faces, traffic signs, and handwritten digits). The intuition behind is that taking a sparse representation for the different samples as point of departure highlights the important correlations among the samples that one then wants to exploit to arrive at the final, effective low-dimensional embedding. We explicitly adapt the LPP and LLE techniques to work with the sparse representation criterion and compare to the original methods on the referenced databases, and this for both unsupervised and supervised cases. The improved results corroborate the usefulness of the proposed sparse representation based linear and non-linear projections.
Technology, Science & Technology, Computer Science, PSI_VISICS, sparse representation, Computer Science, Artificial Intelligence, dimensionality reduction
Technology, Science & Technology, Computer Science, PSI_VISICS, sparse representation, Computer Science, Artificial Intelligence, dimensionality reduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
