Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phase mixtures in shear zones

Authors: Rüdiger Kilian;

Phase mixtures in shear zones

Abstract

Deformation of polymineralic rocks at elevated temperatures usually results in grain size refinement but also in a grain scale mixture of mineral phases. Phase mixtures may either be homogeneous or exhibit a compositional and microstructural layering. Depending on the host rock stability, mixtures may consist of combinations of redistributed or newly, synkinematically formed phases. In general either neighbour-switching or heterogeneous nucleation are envisaged as processes responsible for mixing during diffusion creep s.l. including grain boundary sliding and grain-scale transport processes. In order to quantify phase mixtures, neighbourhood relations can be analysed to differentiate random, clustered or anti-clustered distributions. Heterogeneous nucleation is usually considered to allow for anti-clustered distributions, while neighbour switching during grain boundary sliding potentially produces random distributions.Here, phase mixing is explored based on contact densities as well as on centre-to-centre distances. In particular, the effect of directionality that is neighbour relations as a function of the relative position in a 2D section is considered. The direction of neighbours is considered by the normal of the boundary trace as well as alternatively, by the direction of the centre-to-centre join.Given sufficiently large datasets and non-extreme mixtures (e.g. with 0.2 < phase proportion < 0.8) a confidence interval of the results can be defined. Large datasets of ultramylonites of different metamorphic grade, phase proportions, compositions (ultramafic, mafic, quartzo-feldspatic) and microstructures (layered, isotropic) are tested.It is found that phase anti-clustering is generally more pronounced in a direction close to the stretching direction in either layered or homogeneous ultramylonites. In layered mylonites, layer-normal relations are frequently found to be random while intralayer relations are often anti-clustered.In the different rock types, specific anti-clustered phases can be discriminated, e.g., orthopyroxene with respect to olivine, k-feldspar with respect to plagioclase and quartz, and hornblende with respect to plagioclase. Other phase assemblages e.g. quartz-plagioclase are frequently found to be distributed randomly, hinting at mineral specific roles during diffusion creep s.l. and generally at element mobilities in deforming metamorphic rocks.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!