Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A scale-independent model for the analysis of geomorphodiversity index

Authors: Laura Melelli; Martina Burnelli; Massimiliano Alvioli;

A scale-independent model for the analysis of geomorphodiversity index

Abstract

<p>The World Urbanization Prospects (ONU) estimates that within 2050 about 70% of the world's population will live in urban areas. The use of GIS and spatial analysis are essential tools for proper land use planning, which takes into account the geomorphological characteristics of the territory, as the starting point for the safeguard of urban ecosystems.</p><p>Several geological and environmental approaches have been proposed, albeit they usually lack a new objective, quantitative and scale independent model. At variance with common approaches, recently a new geomorphodiversity index was proposed which aims at an objective classification of joint geological, hydrological, biotic and ... features, in Italy.</p><p>In this work, we show results of a study performed in urban areas in Italy, where we apply systematic spatial analysis for the identification of the geomorphodiversity index. The approach proposed a quantitative assessment of topographic features (i.e., slope and landforms classification) is a spatial analysis in GRASS GIS through the use of geomorphon method and additional morphometric quantities. We aim at the definition of a new scale-independent approach, analyzing all of the morphometric quantities calculated at different scales (i.e., within moving windows of different sizes). We shown that scale- and model-independent selection of such features is possible for most of the considered quantities.</p><p>We argue that our work is relevant for the objective selection of quantities to define a geomorphodiversity index, and its calculation in  areas of arbitrary size and geomorphological properties, provided the same input data is available.</p>

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?