Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.5075/epf...
Doctoral thesis . 2013
Data sources: Datacite
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Patch-based methods for variational image processing problems

Authors: D'Angelo, Emmanuel;

Patch-based methods for variational image processing problems

Abstract

Image Processing problems are notoriously difficult. To name a few of these difficulties, they are usually ill-posed, involve a huge number of unknowns (from one to several per pixel!), and images cannot be considered as the linear superposition of a few physical sources as they contain many different scales and non-linearities. However, if one considers instead of images as a whole small blocks (or patches) inside the pictures, many of these hurdles vanish and problems become much easier to solve, at the cost of increasing again the dimensionality of the data to process. Following the seminal NL-means algorithm in 2005-2006, methods that consider only the visual correlation between patches and ignore their spatial relationship are called non-local methods. While powerful, it is an arduous task to define non-local methods without using heuristic formulations or complex mathematical frameworks. On the other hand, another powerful property has brought global image processing algorithms one step further: it is the sparsity of images in well chosen representation basis. However, this property is difficult to embed naturally in non-local methods, yielding algorithms that are usually inefficient or circonvoluted. In this thesis, we explore alternative approaches to non-locality, with the goals of i) developing universal approaches that can handle local and non-local constraints and ii) leveraging the qualities of both non-locality and sparsity. For the first point, we will see that embedding the patches of an image into a graph-based framework can yield a simple algorithm that can switch from local to non-local diffusion, which we will apply to the problem of large area image inpainting. For the second point, we will first study a fast patch preselection process that is able to group patches according to their visual content. This preselection operator will then serve as input to a social sparsity enforcing operator that will create sparse groups of jointly sparse patches, thus exploiting all the redundancies present in the data, in a simple mathematical framework. Finally, we will study the problem of reconstructing plausible patches from a few binarized measurements. We will show that this task can be achieved in the case of popular binarized image keypoints descriptors, thus demonstrating a potential privacy issue in mobile visual recognition applications, but also opening a promising way to the design and the construction of a new generation of smart cameras.

Keywords

Inverse problems, Image processing, Privacy, Social sparsity, Non-local algorithms, Local binary descriptors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average