Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Recurrent Learning Vector Quantization

Authors: Ravichandran, Jensun;

Recurrent Learning Vector Quantization

Abstract

Learning Vector Quantization (LVQ) methods have been popular choices of classification models ever since its introduction by T. Kohonen in the 90s. These days, LVQ is combined with Deep Learning methods to provide powerful yet interpretable machine-learning solutions to some of the most challenging computational problems. However, techniques to model recurrent relationships in the data using prototype methods still remain quite unsophisticated. In particular, we are not aware of any modification of LVQ that allows the input data to have different lengths. Needless to say, such data is abundant in today's digital world and demands new processing techniques to extract useful information. In this paper, we propose the use of the Siamese architecture to not only model recurrent relationships within the prototypes but also the ability to handle prototypes of various dimensions simultaneously.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!