Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engineering, Technol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering, Technology & Applied Science Research
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accurate Estimation without Calibration of the Complex Relative Permittivity of Multilayer Dielectric Material based on the Finite Integration Technique

Authors: Manh-Cuong Ho; Trong-Hieu Le;

Accurate Estimation without Calibration of the Complex Relative Permittivity of Multilayer Dielectric Material based on the Finite Integration Technique

Abstract

In this paper, a simple and effective solution is proposed to accurately estimate the complex relative permittivity of individual layers and multilayers of dielectric material samples from the S-parameters measured by two waveguide cells having equal or different lengths filled with the same vacuum/empty material without having to calibrate before performing experiments. The measurement system is set up by modeling using the Computer Simulation Technology (CST) software. In the modeling, a single layer/multilayer material sample is placed in the X-band rectangular waveguide and it has two ports used for the electromagnetic wave supply and measurement of S-parameters. From the S-parameters measured, the complex relative permittivity of individual layers and the multilayers of the material samples are estimated by the proposed method. The known single-layer and multilayer materials such as Garlock, Bakelite, and Teflon have different dielectric constants and thicknesses. The results show that the complex relative permittivity of the samples matches the measured and calculated values of S-parameters in the frequency range of 8.2GHz to 12.4GHz.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold