
In this study, firstly, we will present some properties of hyperbolic numbers. Then, we will introduce hyperbolic matrices, which are matrices with hyperbolic number entries. Additionally, we will examine the algebraic properties of these matrices and reveal its difference from other matrix structures such as real, dual, and complex matrices. As a result of comparing the results found in this work with real, dual, and complex matrices, it will be revealed that there are similarities in additive properties and differences in some multiplicative properties. Finally, we will define some special hyperbolic matrices and give their properties and relations with real matrices.
Matematik, Hyperbolic matrices;hyperbolic numbers;special hyperbolic matrices, Mathematical Sciences
Matematik, Hyperbolic matrices;hyperbolic numbers;special hyperbolic matrices, Mathematical Sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
