Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IACR Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IACR Transactions on Symmetric Cryptology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Article . 2024
License: CC BY
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Impossible Boomerang Attacks

Application to Simon and SKINNYee
Authors: Bonnetain, Xavier; Cordero, Margarita; Lallemand, Virginie; Minier, Marine; Naya Plasencia, Maria;
Abstract

The impossible boomerang attack, introduced in 2008 by Jiqiang Lu, is an extension of the impossible differential attack that relies on a boomerang distinguisher of probability 0 for discarding incorrect key guesses. In Lu’s work, the considered impossible boomerang distinguishers were built from 4 (different) probability-1 differentials that lead to 4 differences that do not sum to 0 in the middle, in a miss-in-the-middle way.In this article, we study the possibility of extending this notion by looking at finerlevel contradictions that derive from boomerang switch constraints. We start by discussing the case of quadratic Feistel ciphers and in particular of the Simon ciphers. We exploit their very specific boomerang constraints to enforce a contradiction that creates a new type of impossible boomerang distinguisher that we search with an SMT solver. We next switch to word-oriented ciphers and study how to leverage the Boomerang Connectivity Table contradictions. We apply this idea to SKINNYee, a recent tweakable block cipher proposed at Crypto 2022 and obtain a 21-round distinguisher.After detailing the process and the complexities of an impossible boomerang attack in the single (twea)key and related (twea)key model, we extend our distinguishers into attacks and present a 23-round impossible boomerang attack on Simon-32/64 (out of 32 rounds) and a 29-round impossible boomerang attack on SKINNYee (out of 56 rounds). To the best of our knowledge our analysis covers two more rounds than the (so far, only) other third-party analysis of SKINNYee that has been published to date.

Keywords

Cryptanalysis, SKINNYee, Impossible boomerang attack, [INFO] Computer Science [cs], Simon, [INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
Published in a Diamond OA journal
Related to Research communities