<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Block ciphers are protected against side-channel attacks by masking. On one hand, when the leakage model is unknown, second-order correlation attacks are typically used. On the other hand, when the leakage model can be profiled, template attacks are prescribed. But what if the profiled model does not exactly match that of the attacked device?One solution consists in regressing on-the-fly the scaling parameters from the model. In this paper, we leverage an Expectation-Maximization (EM) algorithm to implement such an attack. The resulting unprofiled EM attack, termed U-EM, is shown to be both efficient (in terms of number of traces) and effective (computationally speaking). Based on synthetic and real traces, we introduce variants of our U-EM attack to optimize its performance, depending on trade-offs between model complexity and epistemic noise. We show that the approach is flexible, in that it can easily be adapted to refinements such as different points of interest and number of parameters in the leakage model.
Computer engineering. Computer hardware, Side-Channel Analysis, Masked Cryptography, Information technology, T58.5-58.64, Maximum Likelihood Distinguisher, TK7885-7895, Expectation Maximization (EM), Unprofiled EM (U-EM) Attack, Leakage Model Regression
Computer engineering. Computer hardware, Side-Channel Analysis, Masked Cryptography, Information technology, T58.5-58.64, Maximum Likelihood Distinguisher, TK7885-7895, Expectation Maximization (EM), Unprofiled EM (U-EM) Attack, Leakage Model Regression
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |