Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Statistics and Its I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Statistics and Its Interface
Article . 2020 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonparametric statistical inference and imputation for incomplete categorical data

Authors: Wang, Chaojie; Shen, Linghao; Li, Han; Fan, Xiaodan;

Nonparametric statistical inference and imputation for incomplete categorical data

Abstract

Missingness in categorical data is a common problem in various real applications. Traditional approaches either utilize only the complete observations or impute the missing data by some ad hoc methods rather than the true conditional distribution of the missing data, thus losing or distorting the rich information in the partial observations. In this paper, we propose the Dirichlet Process Mixture of Collapsed Product-Multinomials (DPMCPM) to model the full data jointly and compute the model efficiently. By fitting an infinite mixture of product-multinomial distributions, DPMCPM is applicable for any categorical data regardless of the true distribution, which may contain complex association among variables. Under the framework of latent class analysis, we show that DPMCPM can model general missing mechanisms by creating an extra category to denote missingness, which implicitly integrates out the missing part with regard to their true conditional distribution. Through simulation studies and a real application, we demonstrate that DPMCPM outperforms existing approaches on statistical inference and imputation for incomplete categorical data of various missing mechanisms. DPMCPM is implemented as the R package \texttt{MMDai}, which is available from the Comprehensive R Archive Network at https://cran.r-project.org/web/packages/MMDai/index.html.

9 pages, 2 figures

Related Organizations
Keywords

Methodology (stat.ME), FOS: Computer and information sciences, Statistics - Computation, Statistics - Methodology, Computation (stat.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze