Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Theoreti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Advances in Theoretical and Mathematical Physics
Article . 2001 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2000
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Super Chern–Simons theory and flat super connections on a torus

Super Chern-Simons theory and flat super connections on a torus
Authors: Miković, A.; Picken, R.;

Super Chern–Simons theory and flat super connections on a torus

Abstract

We study the moduli space of a super Chern-Simons theory on a manifold with the topology ${\bf R}\times ��$, where $��$ is a compact surface. The moduli space is that of flat super connections modulo gauge transformations on $��$, and we study in detail the case when $��$ is atorus and the supergroup is $OSp(m|2n)$. The bosonic moduli space is determined by the flat connections for the maximal bosonic subgroup $O(m)\times Sp(2n)$, while the fermionic moduli appear only for special parts of the bosonic moduli space, which are determined by a vanishing determinant of a matrix associated to the bosonic part of the holonomy. If the CS supergroup is the exponential of a super Lie algebra, the fermionic moduli appear only for the bosonic holonomies whose generators have zero determinant in the fermion-fermion block of the super-adjoint representation. A natural symplectic structure on the moduli space is induced by the super Chern-Simons theory and it is determined by the Poisson bracket algebra of the holonomies. We show that the symplectic structure of homogenous connections is useful for understanding the properties of the moduli space and the holonomy algebra, and we illustrate this on the example of the $OSp(1|2)$ supergroup.

15 pages, LaTex, typos corrected

Keywords

High Energy Physics - Theory, super Lie algebra, Moduli problems for differential geometric structures, FOS: Physical sciences, Model quantum field theories, Mathematical Physics (math-ph), bosonic holonomies, symplectic structure of homogeneous connections, High Energy Physics - Theory (hep-th), Supersymmetric field theories in quantum mechanics, moduli space, determined, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
bronze