Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incident Detection Algorithms for COMPASS - An Advanced Traffic Management System

Authors: Philip H. Masters; Joseph K. Lam; Kam Wong;

Incident Detection Algorithms for COMPASS - An Advanced Traffic Management System

Abstract

<div class="htmlview paragraph">Advanced Traffic Management Systems (ATMS) provide the means for local transportation officials to monitor traffic conditions, adjust traffic operations, and respond to accidents. By providing early traffic incident detection and management, and by redistributing traffic to less congested portions of the highway network, ATMS can influence vehicle operators' route choices. COMPASS, a state-of-the-art advancedtraffic managementsystemimplemented in the Metropolitan Toronto area, has adopted most of the Intelligent Vehicle-Highway Systems (IVHS) technologies.</div> <div class="htmlview paragraph">This paper describes the logic and implementation of the automatic incident detection for COMPASS. The purpose of incident detection is to identify the potential occurrence of incidents in a traffic stream by analyzing the flow characteristicsof the traffic stream. The output of the incident detection function will form the basis for incident verification by the operator and implementation of traffic response plans. Two incident detection algorithms have been developed for the system, namely the All Purpose Incident Detection (APID) algorithm and the Double Exponential Smoothing (DES) algorithm.</div> <div class="htmlview paragraph">The APID algorithm is based on the California incident detection algorithms which have the general structure of a binary decision tree. The algorithm has been designed to handle different traffic patterns. For example, the light/medium traffic incident detection routines are more suitable for detecting incidents at light/medium traffic conditions than the general incident detection routine. Furthermore, the false alarm rate may be reduced by introducing the compression wave test and persistence test.</div> <div class="htmlview paragraph">The DES algorithm makes use of a short-term forecasting technique for detecting irregularities of a traffic variable (e.g. volume) in a time series. A</div> <div class="htmlview paragraph">tracking signal is obtained by dividing the cumulative error of a traffic variable (e.g. volume) by the current standard deviation of the same variable. An incident will be identified when the tracking signal deviates significantly from a pre-defined threshold value. The traffic variables currently defined for COMPASS are volume, occupancy and speed. The false alarm rate will be reduced if more tracking signals are used (i.e. with more traffic variables defined).</div> <div class="htmlview paragraph">The execution cycle for the incident detection algorithms can be any multiple of the raw traffic data gathering cycle (20 seconds for COMPASS), up to a maximum of nine. Moreover, the traffic data used for the APID algorithm can be averaged over a user definable period from one raw traffic data gathering cycle to a maximum of five minutes. However, data required for the DES algorithm can only be averaged over the execution cycle, due to the nature of the algorithm.</div> <div class="htmlview paragraph">The COMPASS system allows concurrent execution of three algorithms at the same time, but there is virtually no limit regarding the number of algorithms installed in the system. An incident will be declared based on a pre-defined logic combination of the three running algorithms (e.g. [algorithms A and B] or [algorithms [A or B] and C]). This logic combination can be changed by the user in real-time to allow total flexibility.</div> <div class="htmlview paragraph">Before the algorithms were implemented on the COMPASS system, extensive simulation was performed in order to prove the logic of the algorithms and derive a preliminary set of parameters, using the historical data from the Burlington Skyway in Ontario. At the same time the incident detection rate and false alarm rate were thoroughly examined.</div>

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!