Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Jet-Jet and Jet-Wall Interactions of Transient Jets from Multi-Hole Injectors

Authors: J. Abraham; A. Khan; V. Magi;

Jet-Jet and Jet-Wall Interactions of Transient Jets from Multi-Hole Injectors

Abstract

<div class="htmlview paragraph">Interactions between the jets in a multi-hole injector and between the jet and the wall may affect the fuel-air mixing processes in a direct-injection Diesel engine. These interactions are the subject of the investigation in this work. It is known that in the case of free jets, for a given total mass and momentum flow rate, increasing the number of holes would result in an increase in the mixing rate. In the case of a multi-hole injector in an engine, however, if the number of holes are increased beyond an optimum value, the interaction between the jets themselves may result in a reduced mixing. In the limit of increasing the number of holes, a hollow-cone jet would result. The fuel-air mixing in the hollow-cone jet is shown to be slower than in a multi-hole injector with an optimum number of holes. It is also shown that the walls do not appear to have a significant direct effect on the mixing rate as the characteristic time associated with mixing appears to be much shorter than that associated with momentum loss to the walls.</div>

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!