
handle: 11580/18742
Recent developments in quantum information allow for a new understanding of quantum correlations. The aim of this paper is to physically explain why quantum mechanics obeys a stronger bond than the non-sig- naling requirement or alternatively why it obeys a principle of information causality. It is shown that a physical theory violating the quantum bond allows for correlations between settings while quantum mechanics only allows for correlations between possible outcomes. In fact, correlations between settings would violate the protocols used in quantum cryptography. The conclusion is that information codification is a local operation and quantum mechanics sets the general conditions for information exchanging in our universe since it satisfies and saturates the bond that is imposed by the principle of information causality, and in so doing it also sets specific constraints on both the possible interdependencies and the possible interactions (also causal interconnections) in our universe.
Entanglement; Non-Locality; Tsirelson Inequality; Principle of Information Causality
Entanglement; Non-Locality; Tsirelson Inequality; Principle of Information Causality
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
