
We study the ability of three different projection methods to solve high-dimensional state space problems: Galerkin, collocation, and least squares projection. The curse of dimensionality can be reduced substantially for both Least Squares and Galerkin projection methods through the use of monomial formulas. Least Squares are shown to require a good initial value in order to give an accurate solution. Alternatively, we suggest a new ad hoc collocation method for complete polynomials that is fast and easy to implement.
ddc:330
ddc:330
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
