
handle: 11588/828978 , 11368/3032613 , 11562/1033651 , 11390/1190634
A classic result by Stockmeyer [16] gives a non-elementary lower bound to the emptiness problem for star-free generalized regular expressions. This result is intimately connected to the satisfiability problem for interval temporal logic, notably for formulas that make use of the so-called chop operator. Such an operator can indeed be interpreted as the inverse of the concatenation operation on regular languages, and this correspondence enables reductions between non-emptiness of star-free generalized regular expressions and satisfiability of formulas of the interval temporal logic of the chop operator under the homogeneity assumption [5]. In this paper, we study the complexity of the satisfiability problem for a suitable weakening of the chop interval temporal logic, that can be equivalently viewed as a fragment of Halpern and Shoham interval logic featuring the operators B, for “begins”, corresponding to the prefix relation on pairs of intervals, and D, for “during”, corresponding to the infix relation. The homogeneous models of the considered logic naturally correspond to languages defined by restricted forms of regular expressions, that use union, complementation, and the inverses of the prefix and infix relations.
Interval Temporal Logic, Star-Free Regular Languages, Satisfiability, Complexity, Interval Temporal Logic, Complexity, Satisfiability, Star-Free Regular Languages, Complexity; Interval Temporal Logic; Satisfiability; Star-Free Regular Languages, 004, ddc: ddc:004
Interval Temporal Logic, Star-Free Regular Languages, Satisfiability, Complexity, Interval Temporal Logic, Complexity, Satisfiability, Star-Free Regular Languages, Complexity; Interval Temporal Logic; Satisfiability; Star-Free Regular Languages, 004, ddc: ddc:004
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
