Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Proceedin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incentive Engineering for Concurrent Games

Authors: Hyland, David; Gutierrez, Julian; Wooldridge, Michael;

Incentive Engineering for Concurrent Games

Abstract

We consider the problem of incentivising desirable behaviours in multi-agent systems by way of taxation schemes. Our study employs the concurrent games model: in this model, each agent is primarily motivated to seek the satisfaction of a goal, expressed as a Linear Temporal Logic (LTL) formula; secondarily, agents seek to minimise costs, where costs are imposed based on the actions taken by agents in different states of the game. In this setting, we consider an external principal who can influence agents' preferences by imposing taxes (additional costs) on the actions chosen by agents in different states. The principal imposes taxation schemes to motivate agents to choose a course of action that will lead to the satisfaction of their goal, also expressed as an LTL formula. However, taxation schemes are limited in their ability to influence agents' preferences: an agent will always prefer to satisfy its goal rather than otherwise, no matter what the costs. The fundamental question that we study is whether the principal can impose a taxation scheme such that, in the resulting game, the principal's goal is satisfied in at least one or all runs of the game that could arise by agents choosing to follow game-theoretic equilibrium strategies. We consider two different types of taxation schemes: in a static scheme, the same tax is imposed on a state-action profile pair in all circumstances, while in a dynamic scheme, the principal can choose to vary taxes depending on the circumstances. We investigate the main game-theoretic properties of this model as well as the computational complexity of the relevant decision problems.

In Proceedings TARK 2023, arXiv:2307.04005

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Science - Computer Science and Game Theory, Computer Science - Multiagent Systems, Computer Science and Game Theory (cs.GT), Logic in Computer Science (cs.LO), Multiagent Systems (cs.MA)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities