Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Respiratory Carearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Respiratory Care
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Respiratory Care
Article . 2011 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
Respiratory Care
Article . 2011
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Triggering of the Ventilator in Patient-Ventilator Interactions

Authors: Catherine S. H. Sassoon;

Triggering of the Ventilator in Patient-Ventilator Interactions

Abstract

With current ventilator triggering design, in initiating ventilator breaths patient effort is only a small fraction of the total effort expended to overcome the inspiratory load. Similarly, advances in ventilator pressure or flow delivery and inspiratory flow termination improve patient effort or inspiratory muscle work during mechanical ventilation. Yet refinements in ventilator design do not necessarily allow optimal patient-ventilator interactions, as the clinician is key in managing patient factors and selecting appropriate ventilator factors to maintain patient-ventilator synchrony. In patient-ventilator interactions, unmatched patient flow demand by ventilator flow delivery results in flow asynchrony, whereas mismatches between mechanical inspiratory time (mechanical T(I)) and neural T(I) produce timing asynchrony. Wasted efforts are an example of timing asynchrony. In the triggering phase, trigger thresholds that are set too high or the type of triggering methods induces wasted efforts. Wasted efforts can be aggravated by respiratory muscle weakness or other conditions that reduce respiratory drive. In the post-triggering phase, ventilator factors play an important role in patient-ventilator interaction; this role includes the assistance level, set inspiratory flow rate, T(I), pressurization rate, and cycling-off threshold, and to some extent, applied PEEP. This paper proposes an algorithm that clinicians can use to adjust ventilator settings with the goal to eliminate or reduce patients' wasted efforts.

Related Organizations
Keywords

Ventilators, Mechanical, Inhalation, Respiratory Mechanics, Humans, Pulmonary Ventilation, Respiration, Artificial, Algorithms, Work of Breathing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
bronze