
Platelet-activating factor (PAF) mediates nasal congestion and rhinorrhea by affecting vascular permeability, but the underlying mechanisms remain unclear. Here, we sought to explore the effect of PAF on the nasal epithelial barrier in chronic rhinosinusitis with nasal polyps (CRSwNP).Human nasal epithelial cells (hNECs) were pre-treated with Apafant, a PAF receptor (PAFR) inhibitor, or MCC950, an NOD-like receptor protein 3 (NLRP3) inflammasome inhibitor, before PAF stimulation. The nasal epithelial barrier function was assessed by measuring the transepithelial electrical resistance (TER) and sodium fluorescein flux. Additionally, the expression of mRNAs and proteins of tight junctions were assessed.PAF significantly decreased TER and enhanced the fluorescein flux permeability in air-liquid interface cultures of hNECs, while also downregulating the expression of ZO-1, occludin, claudin-1, and claudin-4. However, the disruptive effect of PAF on the nasal epithelial barrier was attenuated by MCC950, but not by Apafant. Furthermore, MCC950 inhibited PAF-induced NLRP3 activation and its downstream molecules, including caspase-1, ASC, interleukin (IL)-1β, and IL-18.Our findings indicate that PAF has the potential to disrupt the nasal epithelial barrier in CRSwNP and may be linked to NLRP3 activation, while PAFR is not essential for this process. This discovery helps to explain why PAFR antagonists are ineffective in blocking PAF-mediated inflammation in clinical settings.
Original Article
Original Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
