Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
License: implied-oa
Data sources: UnpayWall
Cell Cycle
Article . 2006 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2006
versions View all 2 versions
addClaim

Sister Chromatid Cohesion Remodeling and Meiotic Recombination

Authors: Anna V, Kateneva; Michael E, Dresser;

Sister Chromatid Cohesion Remodeling and Meiotic Recombination

Abstract

Proper control of cohesion along the chromosome arms is essential for segregation of homologous chromosomes in meiosis. In a recent study we reported that Tid1p, a protein previously implicated in recombination, is required for resolution of Mcd1p-dependent cohesion in meiosis. Here we demonstrate that Pds5p and Dmc1p promote this cohesion. Pds5p is known to be required for maintenance of cohesion while Dmc1p is recognized as essential for meiotic recombination. Finding that the same defect in separation of sister chromatids could be suppressed by disrupting the functions of these proteins supports the emerging recognition that cohesion is remodeled during recombination and further indicates that cohesion is modified specifically to regulate meiotic recombination. We also find that overexpression of the regulatory subunit of Cdc7p kinase, Dbf4p, suppresses the tid1delta sporulation defect, suggesting a role for Cdc7p/Dbf4p in regulating cohesion.

Keywords

Fungal Proteins, Recombination, Genetic, Meiosis, DNA Repair, Mitosis, Chromatids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
hybrid