Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Autophagyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Autophagy
Article
Data sources: UnpayWall
Autophagy
Article . 2012 . Peer-reviewed
Data sources: Crossref
Autophagy
Article . 2012
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autophagy and ammonia

Authors: Heesun, Cheong; Tullia, Lindsten; Craig B, Thompson;
Abstract

Autophagy plays an important role in the cellular response to a variety of metabolic stress conditions thus contributing to the maintenance of intracellular homeostasis. Studies in yeast have defined the genetic components involved in the initiation of autophagy as well as the progression through the autophagic cascade. The yeast kinase Atg1 initiates autophagy in response to nutrient limitation in a TOR-dependent manner. The ulk family of genes encodes the mammalian orthologue of yeast Atg1. Our recent work using mouse embryonic fibroblast (MEF) cell lines deficient for both ulk1 and ulk2, has revealed that autophagy induction is more complex in mammals than in yeast. Furthermore, these data confirm the surprising finding that a by-product of amino acid metabolism, ammonia, is a strong inducer of autophagy, as first shown by the Abraham laboratory.

Related Organizations
Keywords

Mice, Ammonia, TOR Serine-Threonine Kinases, Autophagy, Animals, Saccharomyces cerevisiae, Amino Acids, Models, Biological, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
bronze