Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Autophagyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Autophagy
Article
Data sources: UnpayWall
Autophagy
Article . 2009 . Peer-reviewed
Data sources: Crossref
Autophagy
Article . 2009
versions View all 2 versions
addClaim

Autophagy in coxsackievirus-infected neurons

Authors: Seung-Yong, Yoon; Young-Eun, Ha; Jung-Eun, Choi; Jeonghyun, Ahn; Heuiran, Lee; Dong-Hou, Kim;

Autophagy in coxsackievirus-infected neurons

Abstract

Autophagy is a process to engulf aberrant organelles or protein aggregates into double-membrane vesicles for lysosomal breakdown. Autophagy is a protective process against some intracellular bacteria and viruses; however, it is also used for replication by some viruses, such as poliovirus. We recently found that coxsackievirus B4 (CVB4) also induces the autophagy pathway and activates the calpain system for replication in neurons. Notably, the inhibition of autophagy with 3-methyladenine (3MA) reduced calpain activation and virus replication. Calpain inhibitors also reduced autophagosome formation and virus replication. This finding indicates that calpain and the autophagy pathway are closely connected with each other during the infection. Interestingly, we also found that 3MA and calpain inhibitors enhanced the caspase-3 specific cleavage of spectrin during CVB4 infection, suggesting that autophagy inhibition by these drugs triggered apoptosis. Thus, autophagy and apoptosis may balance each other in CVB4-infected neurons. Here, we show that inhibition of caspase with zVAD increased autophagosome formation, further proposing the cross-talk between autophagy and apoptosis in CVB4-infected neurons.

Related Organizations
Keywords

Neurons, Sirolimus, Calpain, Adenine, Coxsackievirus Infections, Apoptosis, Cysteine Proteinase Inhibitors, Virus Replication, Models, Biological, Amino Acid Chloromethyl Ketones, Rats, Caspases, Autophagy, Animals

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
bronze