
It is known [3], [5] that, the complex-valued solutions of(B)(apart from the trivial solution f(x)≡0) are of the form(C)(D)In case f is a measurable solution of (B), then f is continuous [2], [3] and the corresponding ϕ in (C) is also continuous and ϕ is of the form [1],(E)In this paper, the functional equation(P)where f is a complex-valued, measurable function of the real variable and A≠0 is a real constant, is considered. It is shown that f is continuous and that (apart from the trivial solutions f ≡ 0, 1), the only functions which satisfy (P) are the cosine functions cos ax and - cos bx, where a and b belong to a denumerable set of real numbers.
functional analysis
functional analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
