
Let X and Y be topological spaces. If Y is a uniform space then one of the most useful function space topologies for the class of continuous functions on X to Y (denoted by C) is the topology of uniform convergence. The reason for this usefulness is the fact that in this topology C is closed in YX (see Theorem 9, page 227 in [2]) and consequently, if Y is complete then C is complete. In this paper I shall show that a similar result is true for the function space of connectivity functions in the topology of uniform convergence and for the function space of semi-connectivity functions in the graph topology when X×Y is completely normal. In a subsequent paper the problem of connected functions will be discussed.
topology
topology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
