
The object of this note is to report on some of the properties of a class of operators induced by inner functions. If m is normalized Lebesgue measure on the unit circle X in the complex plane and Cϕ is an inner function (a complex function on X of unit modulus almost everywhere whose Poisson integral is a non-constant holomorphic function in the open unit disk), then an operator Cϕ on L2(m) is defined by
functional analysis
functional analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 128 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
