
This paper is concerned with the ideal theory of a commutative ringR.We sayRhas Property (α) if each primary ideal inRis a power of its (prime) radical;Ris said to have Property (δ) provided every ideal inRis an intersection of a finite number of prime power ideals. In (2, Theorem 8, p. 33) it is shown that ifDis a Noetherian integral domain with identity and if there are no ideals properly between any maximal ideal and its square, thenDis a Dedekind domain. It follows from this that ifDhas Property (α) and is Noetherian (in which caseDhas Property (δ)), thenDis Dedekind.
commutative algebra
commutative algebra
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
