Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2008
License: CC BY
Data sources: ZENODO
https://dx.doi.org/10.4122/1.1...
Other literature type . 2008
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Particulate collector

Authors: Matsumoto, Edson; Caram, Rosana; Catalano, Fernando; Matsumoto, Edson;

Particulate collector

Abstract

The goal of this work was to manufacture and to analyze a passive device performance (inertial collector). This one has worked as an opening for the inside ambient natural airing and also it retains some particulate material present in the air which passes through it. The collector work has been based in the inertia which each particle has, that is, as the air flow enters through the inertial collector opening it is accelerated due to the reduction in the duct transversal section. As these ducts are made with obstacles forcing the flow direction change, the heaviest particles, by their higher inertia have followed in rectilinear path against the obstacle. In order to check the inertial collector yield particulate material samples have been collected in thin filters (to collect particles up to 2.5 micrometer aerodynamic diameter) and in coarse filters (over 2.5 micrometer) set in sequence. These samplings have been performed in and out the test cell with two inertial collectors installed at opposite sides. After the gravimetric analysis of these filters one checked that the inertial collectors have achieved inside the test cell up to 80% reduction of coarse particulate mass and up to 15% of thin particulate mass.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 1
  • 4
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
1
Green