Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedical and Biote...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomedical and Biotechnology Research Journal
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Predicting Breast Cancer using Machine Learning Classifiers and Enhancing the Output by Combining the Predictions to Generate Optimal F1-Score

Authors: Disha Harshadbhai Parekh; Vishal Dahiya;

Predicting Breast Cancer using Machine Learning Classifiers and Enhancing the Output by Combining the Predictions to Generate Optimal F1-Score

Abstract

Background: Biomedical field has gained a lot of interest from active researchers today. Treating various diseases prevailing among the world has believed to bring huge insight in the today's research world. Second, advancement in technology has eased the work of researchers to justify their work. Machine learning (ML) is an approach being used by bioengineers today to predict diseases and to even aid them in drug discovery. Methods: Considering both the points, one of the most serious diseases, that is breast cancer here, is predicted using ML approaches. Breast cancer is classified as either benign or malignant which is to be predicted with the help of ML classifiers. A very famous dataset Wisconsin Breast Cancer Dataset is used here and is trained by three classifiers mainly support vector machine, general linear model, and neural network (NNET) against testing dataset. Testing the breast cancer prediction was carried out keeping in mind the accuracy of each of the classifiers. Results: This study is involving a generic code in R language. Conclusions: The study intends to show the usage of NNETs in breast cancer prediction using single-layered structure.

Keywords

receiver operating characteristic, accuracy, neural network, wisconsin dataset, r, general linear model, machine learning classifiers, breast cancer, support vector machine, f1-score, TP248.13-248.65, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%
gold