Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Agricultu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Agricultural Engineering
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

3D modeling and volume measurement of bulk grains stored in large warehouses using bi-temporal multi-site terrestrial laser scanning data

Authors: Xingbo Hu; Tian Xia; Leidong Yang; Fangming Wu; Yinghong Tian;

3D modeling and volume measurement of bulk grains stored in large warehouses using bi-temporal multi-site terrestrial laser scanning data

Abstract

Terrestrial laser scanning (TLS) is a promising technology for quantity checking huge grain stocks with low cost, light workload and high efficiency. Existing applications of TLS in bulk grain measurement and quantification lack the ability to capture complete structural information of grain bulks and thus will result in large errors. In this paper, we propose a bi-temporal TLS scheme for fast 3D modeling and accurate volume measurement of bulk grains stored in large warehouses. The scheme uses bi-temporal multi-site TLS datasets acquired under both empty and full or high loading conditions to obtain complete surface information about grain bulk’s structure. In order for a grain bulk’s all external surfaces and the 3D volumetric model reconstructed therefrom to be automatically derived from the bi-temporal TLS dataset, several dedicated methods are developed for the scheme. A fully automated marker-free strategy exploring structurally semantic information inherent in the large grain storehouses is adopted to register multi-scan TLS point cloud data captured in large-scale granary scenes. Also, a local minima-based region growing technique is devised to extract underlying surfaces from a granary scene point cloud model. Experiments show that the proposed 3D modeling and volume measurement scheme can work effectively and quickly in TLS-based granary field applications and repeated test data demonstrate its correctness, repeatability and accuracy. Compared with the conventional manual measurement approach, the bi-temporal TLS scheme can not only achieve much higher measurement precision, but also greatly improve efficiency by significantly reducing cost, workload, and manpower. It has good potential for use in the area of nation-wide grain inventory inspection in China.

Keywords

markerless registration, grain storehouse, S, Agriculture (General), surface extraction, Agriculture, Bulk grain measurement, point cloud, S1-972

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold