
pmid: 23589925
Molecular events involved in the homologous desensitization of histamine-mediated signal transduction system in glioma cells are not well understood. The aim of this study was designed to gain further insight into possible events in the process using the C6 glioma cells. Incubation of histamine caused increases in inositol phosphate (IP1) formation and intracellular free-calcium concentration [Ca2+]i in C6 glioma cells via the activation of a G-protein-coupled phospholipase C (PI-PLC). Histamine also caused an increase in extracellular release of arachidonic acid (AA) and formation of glycerophosphoinositol (GPI). These effects are likely to be mediated through the activation of receptor-coupled phospholipase A2 (PLA2). Pretreatment of C6 cells with histamine, from 0.1 microM to 1 mM concentrations, for 10 to 60 min significantly reduced the histamine-induced IP1 production, [Ca2+]i accumulation, AA release and GPI formation, despite repeated wash of the cells with buffer solution. Staurosporine (10 nM), a protein kinase C (PKC) inhibitor, reversed almost completely IP1 production, or partially for [Ca2+]i, GPI formation and AA release of this homologous desensitization effect of histamine. Pretreatment of C6 cells with phorbol 12-myristate 13-acetate (PMA), a PKC activator, at 0.1 nM to 0.1 microM for 2 to 15 min caused a reduction of histamine-induced IP1 formation and [Ca2+] accumulation, but enhanced histamine-induced AA release and GPI formation. Ten nM staurosporine completely reversed the effect of PMA on histamine-induced IP1 formation and partially on [Ca2+]i accumulation. However, staurosporine potentiated the effect of PMA on histamine-induced AA release and GPI formation, but the effect could be blocked by H7, a calcium-dependent PKC inhibitor. Our results indicate that activation of PKC by histamine in the signal transduction system is involved in the histamine-induced homologous desensitization event. Since PMA pretreatment could not mimic histamine-induced homologues desensitization event in AA release and GPI formation, it is likely due to the dual actions of this protein kinase activator: on calcium independently, and also on calcium dependent via influx of calcium ion through the plasma membrane. The calcium flux effect of PMA is related to the difference between PMA and histamine on the effects of AA release and GPI formation via activation on PLA2. The results of this study provided strong evidence that PKC is involved in this homologous desensitization caused by continuous histamine receptor activation.
Pyrilamine, Arachidonic Acid, Brain Neoplasms, Inositol Phosphates, Glioma, Staurosporine, Rats, Cell Line, Tumor, Animals, Tetradecanoylphorbol Acetate, Calcium, Histamine, Signal Transduction
Pyrilamine, Arachidonic Acid, Brain Neoplasms, Inositol Phosphates, Glioma, Staurosporine, Rats, Cell Line, Tumor, Animals, Tetradecanoylphorbol Acetate, Calcium, Histamine, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
