Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Virginia Commonwealt...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thyroid Research
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thyroid Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autoimmune Thyroid Disorders

Authors: Brown, Rosalind; Francis, Gary L.;

Autoimmune Thyroid Disorders

Abstract

Thyroid autoimmunity, as reflected by the presence in serum of autoantibodies directed against the thyroid autoantigens thyroglobulin (Tg) and thyroid peroxidase (TPO), is present in >10% of the US population over 12 years of age [1] and is the most common cause of endocrine dysfunction in iodine-sufficient populations [2]. The underlying mechanism is a failure of T-cell tolerance leading to lymphocytic infiltration of the thyroid gland [3] and to a complex sequence of humoral and cellular immune responses to thyroid antigens, presumably in response to an environmental trigger [4]. In chronic lymphocytic thyroiditis (CLT), the predominant immunologic mechanisms are T-cell- and cytokine-mediated thyroid cell damage and apoptotic cell death whereas in Graves' disease (GD) generation of thyrotropin (TSH) receptor autoantibodies leads to thyroid cell stimulation [5], but significant overlap exists. Seven susceptibility genes, in addition to the major histocompatibility gene (HLA-DR3), have now been identified [6]. Some of these genes affect the immune response in general (CD40, CTLA-4, and PTPN22), while others are thyroid specific (thyroglobulin, thyrotropin (TSH) receptor). Some are common to both CLT and GD, while others are specific for GD. In view of the importance of AITD as well as the diverse array of new information, it is only fitting that this special issue of the Journal of Thyroid Research is devoted entirely to this complex subject. Four of the papers we have selected are focused on clinical topics, including AITD in childhood, during pregnancy, in the postpartum period, and in patients with type 1 diabetes mellitus. The fifth paper addresses the potential role of NKT cells in an animal model of thyroiditis. We conclude this special edition with a discussion of thyroid autoimmunity in patients with papillary thyroid cancer (PTC). The association of AI and thyroid cancer was first reported by Dailey et al. [7]. In general, patients with AI appear more likely to have PTC than follicular thyroid cancer (FTC), but a lower frequency of extrathyroidal extension, nodal and distant metastases when compared with patients without AI. In some but not all series, patients with autoimmune thyroiditis (AT) and PTC have improved survival when compared to those with PTC alone, suggesting that thyroid autoimmunity might contribute to improved survival [8–10]. In contrast, other data suggest that AI might actually increase the risk to develop thyroid cancer [10–12]. Several theories have been proposed to explain how AI might increase the risk for thyroid malignancy. Thyrocyte apoptosis and proliferation are increased in AI suggesting that thyrocytes rapidly progressing through the cell cycle might accumulate increased DNA damage resulting in malignant transformation [13]. Russell et al. hypothesized that thyroid cells predestined to become cancers might secrete proinflammatory cytokines that affect immune cells [14]. They showed that thyrocytes of ret/PTC3 transgenic mice express increased levels of interleukins, tumor necrosis factor-α, and cyclooxygenase-2 [14] that could attract and/or activate cells of the immune system. Finally, the ret/PTC recombinant genes have been detected in samples of AI [15–17] suggesting that ret/PTC rearrangements might be present in AI and could be precursors to PTC. From these papers, it is clear that thyroid autoimmunity is a frequent problem in the population and that thyroid autoimmunity can lead to a variety of thyroid disorders including alterations in thyroid hormone synthesis and possibly even neoplasia. Focused research in this area is beginning to illuminate some of the molecular mechanisms that help to explain these associations. Rosalind Brown Gary L. Francis

Keywords

Editorial

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
gold