Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2008 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling the Role of Homologous Receptor Desensitization in Cell Gradient Sensing

Authors: Francis, Lin; Eugene C, Butcher;

Modeling the Role of Homologous Receptor Desensitization in Cell Gradient Sensing

Abstract

Abstract G-protein-coupled chemoattractant receptors signal transiently upon ligand binding to effect cell orientation and motility but then are rapidly desensitized. The importance of desensitization has been unclear, because mutated nondesensitizable receptors mediate efficient chemotaxis. We hypothesized that homologous receptor desensitization is required for cellular navigation in fields of competing attractants. Modeling of receptor-mediated orientation shows that desensitization allows integration of attractant signals. Cells expressing normal receptors are predicted to 1) orient preferentially to distant gradients; 2) seek an intermediate position between balanced agonist sources; 3) and can be repositioned between chemoattractant-defined microenvironmental domains by modest changes in receptor number. In contrast, in the absence of desensitization, orientation is dominated by local agonist sources, precluding continued navigation. Furthermore, cell orientation in competing ligand gradients depends on the relative kinetic rates of receptor desensitization and recycling. We propose that homologous receptor desensitization is critical for cellular navigation in complex chemoattractant fields.

Related Organizations
Keywords

Intracellular Fluid, Receptors, CXCR5, Receptors, CCR7, B-Lymphocyte Subsets, Models, Immunological, Ligands, Chemokine CXCL13, Protein Structure, Tertiary, Up-Regulation, Chemotaxis, Leukocyte, Structural Homology, Protein, T-Lymphocyte Subsets, Humans, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze