Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Immun...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 1983 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancement of natural cytotoxicity by beta-endorphin.

Authors: P M, Mathews; C J, Froelich; W L, Sibbitt; A D, Bankhurst;

Enhancement of natural cytotoxicity by beta-endorphin.

Abstract

Abstract The role of enkephalins, beta-endorphin, or other neuropeptides produced by the nervous system in the alteration of immune responsiveness is generally unknown. The present studies were undertaken to investigate the role of these neuropeptides in the modulation of human spontaneous cytotoxicity induced by natural killer (NK) cells. Natural cytotoxicity was measured by using a standard 51Cr release assay with radiolabeled K562 cells. NK activity was significantly enhanced by both beta-endorphin (30.5 +/- 11.5%, M +/- SE, relative enhancement at 50:1, effector:target (E:T) ratio, 10(-14)M beta-endorphin) and methionine-enkephalin (met-enkephalin) (27.4 +/- 9.7% relative enhancement at 10(-9)M). The magnitude of relative enhancement significantly correlated with increasing concentrations of beta-endorphin. Leucine-enkephalin, alpha-endorphin, and morphine did not augment NK activity. The enhancement of NK activity with beta-endorphin increased at all E:T ratios tested. Naloxone inhibited the augmentation of NK activity produced by beta-endorphin and met-enkephalin. By using a combination of a standard 51Cr release and soft agarose single cell analysis assays, beta-endorphin increased both the number of E:T cell conjugates and the number of active killer cells among target-binding cells. The maximal effector cell recycling capacity was increased by 170%. These studies provide new insight into the mechanisms by which neuropeptides produced by the nervous system can alter immune responsiveness.

Keywords

Cytotoxicity, Immunologic, Killer Cells, Natural, Naloxone, Enkephalin, Methionine, beta-Endorphin, Humans, Endorphins, Binding, Competitive

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    532
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
532
Top 10%
Top 0.1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!