Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Database ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Database Management
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intrusion Detection System

A Comparative Study of Machine Learning-Based IDS
Authors: Amit Singh; Jay Prakash; Gaurav Kumar; Praphula Kumar Jain; Loknath Sai Ambati;

Intrusion Detection System

Abstract

The use of encrypted data, the diversity of new protocols, and the surge in the number of malicious activities worldwide have posed new challenges for intrusion detection systems (IDS). In this scenario, existing signature-based IDS are not performing well. Various researchers have proposed machine learning-based IDS to detect unknown malicious activities based on behaviour patterns. Results have shown that machine learning-based IDS perform better than signature-based IDS (SIDS) in identifying new malicious activities in the communication network. In this paper, the authors have analyzed the IDS dataset that contains the most current common attacks and evaluated the performance of network intrusion detection systems by adopting two data resampling techniques and 10 machine learning classifiers. It has been observed that the top three IDS models—KNeighbors, XGBoost, and AdaBoost—outperform binary-class classification with 99.49%, 99.14%, and 98.75% accuracy, and XGBoost, KNneighbors, and GaussianNB outperform in multi-class classification with 99.30%, 98.88%, and 96.66% accuracy.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
hybrid