
Microarray technology of DNA permits simultaneous monitoring and determining of thousands of gene expression activation levels in a single experiment. Data mining technique such as classification is extensively used on microarray data for medical diagnosis and gene analysis. However, high dimensionality of the data affects the performance of classification and prediction. Consequently, a key issue in microarray data is feature selection and dimensionality reduction in order to achieve better classification and predictive accuracy. There are several machine learning approaches available for feature selection. In this study, the authors use Particle Swarm Organization (PSO) and Genetic Algorithm (GA) to find the performance of several popular classifiers on a set of microarray datasets. Experimental results conclude that feature selection affects the performance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
