
This chapter presents a new approach to on-line decision support systems that is scalable, fast, and capable of analysing even up-to-date data. It is based on a database cluster: a cluster of commercial off-the-shelf computers as hardware infrastructure and off-the-shelf database management systems as transactional storage managers. We focus on central architectural issues and on the performance implications of such a cluster-based decision support system. In the first half, we present a scalable infrastructure and discuss physical data design alternatives for cluster-based on-line decision support systems. In the second half of the chapter, we discuss query routing algorithms and freshness-aware scheduling. This protocol enables users to seamlessly decide how fresh the data analysed should be by allowing for different degrees of freshness of the OLAP nodes. In particular it becomes then possible to trade freshness of data for query performance.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
