Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.4...arrow_drop_down
https://doi.org/10.4018/978159...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.4018/978-1-...
Part of book or chapter of book . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fuzzy Graphs and Fuzzy Hypergraphs

Authors: Leonid S. Bershtein; Alexander V. Bozhenyuk;

Fuzzy Graphs and Fuzzy Hypergraphs

Abstract

Graph theory has numerous application to problems in systems analysis, operations research, economics, and transportation. However, in many cases, some aspects of a graph-theoretic problem may be uncertain. For example, the vehicle travel time or vehicle capacity on a road network may not be known exactly. In such cases, it is natural to deal with the uncertainty using the methods of fuzzy sets and fuzzy logic. Hypergraphs (Berge,1989) are the generalization of graphs in case of set of multiarity relations. It means the expansion of graph models for the modeling complex systems. In case of modelling systems with fuzzy binary and multiarity relations between objects, transition to fuzzy hypergraphs, which combine advantages both fuzzy and graph models, is more natural. It allows to realise formal optimisation and logical procedures. However, using of the fuzzy graphs and hypergraphs as the models of various systems (social, economic systems, communication networks and others) leads to difficulties. The graph isomorphic transformations are reduced to redefinition of vertices and edges. This redefinition doesn’t change properties the graph determined by an adjacent and an incidence of its vertices and edges. Fuzzy independent set, domination fuzzy set, fuzzy chromatic set are invariants concerning the isomorphism transformations of the fuzzy graphs and fuzzy hypergraph and allow make theirs structural analysis.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!