Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.4...arrow_drop_down
https://doi.org/10.4018/978-1-...
Part of book or chapter of book . 2005 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.4018/978-1-...
Part of book or chapter of book . 2009 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.4018/978-1-...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning Systems Engineering

Authors: Valentina Plekhanova;

Learning Systems Engineering

Abstract

Traditionally multi-agent learning is considered as the intersection of two subfields of artificial intelligence: multi-agent systems and machine learning. Conventional machine learning involves a single agent that is trying to maximise some utility function without any awareness of existence of other agents in the environment (Mitchell, 1997). Meanwhile, multi-agent systems consider mechanisms for the interaction of autonomous agents. Learning system is defined as a system where an agent learns to interact with other agents (e.g., Clouse, 1996; Crites & Barto, 1998; Parsons, Wooldridge & Amgoud, 2003). There are two problems that agents need to overcome in order to interact with each other to reach their individual or shared goals: since agents can be available/unavailable (i.e., they might appear and/or disappear at any time), they must be able to find each other, and they must be able to interact (Jennings, Sycara & Wooldridge, 1998).

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!