
Traditionally multi-agent learning is considered as the intersection of two subfields of artificial intelligence: multi-agent systems and machine learning. Conventional machine learning involves a single agent that is trying to maximise some utility function without any awareness of existence of other agents in the environment (Mitchell, 1997). Meanwhile, multi-agent systems consider mechanisms for the interaction of autonomous agents. Learning system is defined as a system where an agent learns to interact with other agents (e.g., Clouse, 1996; Crites & Barto, 1998; Parsons, Wooldridge & Amgoud, 2003). There are two problems that agents need to overcome in order to interact with each other to reach their individual or shared goals: since agents can be available/unavailable (i.e., they might appear and/or disappear at any time), they must be able to find each other, and they must be able to interact (Jennings, Sycara & Wooldridge, 1998).
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
