
Data Science employs techniques and theories to create data products. Data product is merely a data application that acquires its value from the data itself, and creates more data as a result; it's not just an application with data. Data science involves the methodical study of digital data employing techniques of observation, development, analysis, testing and validation. It tackles the real time challenges by adopting a holistic approach. It ‘creates' knowledge about large and dynamic bases, ‘develops' methods to manage data and ‘optimizes' processes to improve its performance. The goal includes vital investigation and innovation in conjunction with functional exploration intended to notify decision-making for individuals, businesses, and governments. This paper discusses the emergence of Data Science and its subsequent developments in the fields of Data Mining and Data Warehousing. The research focuses on need, challenges, impact, ethics and progress of Data Science. Finally the insights of the subsequent phases in research and development of Data Science is provided.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
