Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.4...arrow_drop_down
https://doi.org/10.4018/978-1-...
Part of book or chapter of book . 2017 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.4018/978-1-...
Part of book or chapter of book . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

QSAR of Antioxidants

Authors: Omar Deeb; Mohammad Goodarzi;

QSAR of Antioxidants

Abstract

Antioxidants are substances that protect cells from the damaging effects of oxygen radicals, which are chemicals that play a part in some diseases such as cancer and others. Antioxidants are expected to be promising drugs in the management of these diseases by removing oxidative stress. Most of the modeling approaches involved in designing new antioxidants is based on Quantitative Structure-Activity Relationship (QSAR). A number of QSAR studies have been conducted to elucidate the structural requirements of antioxidants for their activities in order to predict the potency of these compounds with regard to the targeted activity and to direct the synthesis of more potent analogues. The main focus of this chapter is on the QSAR modeling of antioxidant compounds. The authors provide different QSAR studies of antioxidant compounds and try to compare between them in terms of the best models obtained and their use in designing potential new drugs.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author? Do you have the OA version of this publication?