
doi: 10.4012/dmj.2019-313
pmid: 33028791
The objective of this study was to analyze the viscous behavior during setting reaction of resin composite cements and how it is influenced by temperature. Viscous properties during auto-polymerization at 23°C of three adhesive (Panavia V5 [PV5]; RelyX Ultimate [RUL]; Multilink Automix [MLA]) and three self-adhesive (Panavia SA plus [PSA]; RelyX Unicem 2 Automix [RUN]; Multilink SpeedCem [MSC]) resin composite cements were rheometrically measured. Changes in contact angle and temperature during auto-polymerization were evaluated for each cement at 23°C and 37°C. Rheological analysis and temperature measurements corresponded in terms of curve progression. The tested resin composite cements demonstrated strong variations in their viscous behavior during setting reaction. PV5 and PSA become less viscous at 37°C and then polymerize quickly. For RUL and RUN at 37°C, viscosity rises, and polymerization takes place quickly. MLA and MSC start with high viscosity, then MSC polymerizes very fast and MLA rather slowly.
Dental Materials, Surface Properties, Viscosity, Materials Testing, Dental Bonding, Composite Resins, Resin Cements
Dental Materials, Surface Properties, Viscosity, Materials Testing, Dental Bonding, Composite Resins, Resin Cements
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
