Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Bioscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Biosciences and Engineering
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Biosciences and Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
https://dx.doi.org/10.60692/4q...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/ej...
Other literature type . 2020
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A self-adaptive mechanism using weibull probability distribution to improve metaheuristic algorithms to solve combinatorial optimization problems in dynamic environments

آلية ذاتية التكيف تستخدم توزيع احتمالية weibull لتحسين خوارزميات metaheuristic لحل مشكلات التحسين التوافقي في البيئات الديناميكية
Authors: Cesar J. Montiel Moctezuma; Jaime Mora; Miguel González-Mendoza;

A self-adaptive mechanism using weibull probability distribution to improve metaheuristic algorithms to solve combinatorial optimization problems in dynamic environments

Abstract

Au cours des dernières décennies, l'intérêt pour résoudre les problèmes d'optimisation combinatoire dynamique a augmenté. La métaheuristique a été utilisée pour trouver de bonnes solutions dans un temps relativement court, et l'utilisation de stratégies auto-adaptatives a considérablement augmenté en raison de ce type de mécanisme qui s'est avéré être une bonne alternative pour améliorer les performances de ces algorithmes. Sur cette recherche, la performance d'un algorithme génétique est améliorée grâce à un mécanisme auto-adaptatif pour résoudre des problèmes combinatoires dynamiques : 3-SAT, One-Max et TSP, en utilisant la stratégie de cartographie génotype-phénotype et des distributions probabilistes pour définir des paramètres dans l'algorithme. Le mécanisme démontre la capacité d'adapter les algorithmes dans des environnements dynamiques.

En las últimas décadas, ha aumentado el interés por resolver problemas de optimización combinatoria dinámica. La metaheurística se ha utilizado para encontrar buenas soluciones en un tiempo razonablemente bajo, y el uso de estrategias autoadaptativas ha aumentado considerablemente debido a que este tipo de mecanismo demostró ser una buena alternativa para mejorar el rendimiento en estos algoritmos. En esta investigación, se mejora el rendimiento de un algoritmo genético a través de un mecanismo autoadaptativo para resolver problemas combinatorios dinámicos: 3-SAT, One-Max y TSP, utilizando la estrategia de mapeo genotipo-fenotipo y distribuciones probabilísticas para definir parámetros en el algoritmo. El mecanismo demuestra la capacidad de adaptar algoritmos en entornos dinámicos.

In last decades, the interest to solve dynamic combinatorial optimization problems has increased. Metaheuristics have been used to find good solutions in a reasonably low time, and the use of self-adaptive strategies has increased considerably due to these kind of mechanism proved to be a good alternative to improve performance in these algorithms. On this research, the performance of a genetic algorithm is improved through a self-adaptive mechanism to solve dynamic combinatorial problems: 3-SAT, One-Max and TSP, using the genotype-phenotype mapping strategy and probabilistic distributions to define parameters in the algorithm. The mechanism demonstrates the capability to adapt algorithms in dynamic environments.

في العقود الماضية، ازداد الاهتمام بحل مشاكل التحسين التوافقي الديناميكي. تم استخدام Metaheuristics لإيجاد حلول جيدة في وقت منخفض بشكل معقول، وزاد استخدام استراتيجيات التكيف الذاتي بشكل كبير بسبب هذا النوع من الآلية التي أثبتت أنها بديل جيد لتحسين الأداء في هذه الخوارزميات. في هذا البحث، يتم تحسين أداء الخوارزمية الجينية من خلال آلية ذاتية التكيف لحل المشاكل التوافقية الديناميكية: 3 - SAT و One - Max و TSP، باستخدام استراتيجية رسم خرائط النمط الجيني والتوزيعات الاحتمالية لتحديد المعلمات في الخوارزمية. توضح الآلية القدرة على تكييف الخوارزميات في البيئات الديناميكية.

Keywords

Vehicle Routing Problem and Variants, Artificial intelligence, Combinatorial optimization, Hybrid Algorithms, Metaheuristic, Metaheuristics, Epistemology, Dynamic programming, Industrial and Manufacturing Engineering, Engineering, Artificial Intelligence, QA1-939, genetic algorithm, FOS: Mathematics, Swarm Intelligence Optimization Algorithms, Constraint Handling, Probabilistic logic, dynamic combinatorial optimization problems, Global Optimization, Probabilistic analysis of algorithms, Dynamic problem, Optimization Applications, Mathematical optimization, Statistics, Mechanism (biology), Approximation methods and heuristics in mathematical programming, Computer science, FOS: Philosophy, ethics and religion, Algorithm, Philosophy, Computational Theory and Mathematics, Genetic algorithm, Computer Science, Physical Sciences, Weibull distribution, Multiobjective Optimization in Evolutionary Algorithms, TP248.13-248.65, Mathematics, Biotechnology, self-adaptive mechanism

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold