Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vertex-edge perfect Roman domination number

Authors: Bana Al Subaiei; Ahlam AlMulhim; Abolape Deborah Akwu;

Vertex-edge perfect Roman domination number

Abstract

<abstract><p>A vertex-edge perfect Roman dominating function on a graph $ G = (V, E) $ (denoted by ve-PRDF) is a function $ f:V\left(G\right)\longrightarrow\{0, 1, 2\} $ such that for every edge $ uv\in E $, $ \max\{f(u), f(v)\}\neq0 $, or $ u $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $, or $ v $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $. The weight of a ve-PRDF on $ G $ is the sum $ w(f) = \sum_{v\in V}f(v) $. The vertex-edge perfect Roman domination number of $ G $ (denoted by $ \gamma_{veR}^{p}(G) $) is the minimum weight of a ve-PRDF on $ G $. In this paper, we first show that vertex-edge perfect Roman dominating is NP-complete for bipartite graphs. Also, for a tree $ T $, we give upper and lower bounds for $ \gamma_{veR}^{p}(T) $ in terms of the order $ n $, $ l $ leaves and $ s $ support vertices. Lastly, we determine $ \gamma_{veR}^{p}(G) $ for Petersen, cycle and Flower snark graphs.</p></abstract>

Related Organizations
Keywords

petersen graph, vertex-edge perfect domination number, bipartite graph, QA1-939, cycles, trees, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold