
doi: 10.3906/elk-1208-25
handle: 11511/34462
In this paper, a novel behavioral modeling technique for the characterization of memory effects of amplifiers is proposed. This characterization utilizes asymmetric intermodulation distortion (IMD) components, which are the result of a 2-tone excitation of a nonlinear amplifier. These asymmetric IMD components are represented basically by a power series, where each term in the series has its own time delay term. These time delay terms successfully justify the presence of asymmetry in the intermodulation components, which leads to the prediction of amplitude-to-amplitude and amplitude-to-phase distortions. The parameters of the model are extracted using 2-tone measurements. A 100-W peak power amplifier is examined. Model predictions are verified by the measurement results of a 4-tone stimulus. The proposed model can also be used in time domain analysis with arbitrary excitation.
General Computer Science, Electrical and Electronic Engineering
General Computer Science, Electrical and Electronic Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
