Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biodiversity Informa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biodiversity Information Science and Standards
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pensoft
Conference object . 2018
Data sources: Pensoft
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parasitism in Eukaryota - Reconstruction of Ancestral and Unavailable Extant States

Authors: Lydia Buntrock; Bernhard Renard; Emanuel Heitlinger;

Parasitism in Eukaryota - Reconstruction of Ancestral and Unavailable Extant States

Abstract

Parasitism can be defined as an interaction between species in which one of the interaction partners, the parasite, lives in or on the other, the host. The parasite draws food from its host and harms it in the process. According to some estimates, over 40% of all eukaryotes are parasites. Nevertheless, it is difficult to obtain information about a particular taxon is a parasite computationally making it difficult to query large sets of taxa. Here we test to what extend it is possible to use the Open Tree of Life (OTL), a synthesis of phylogenetic trees on a backbone taxonomy (resulting in unresolved nodes), to expand available information via phylogenetic trait prediction. We use the Global Biotic Interactions (GloBI) database to categorise 25,992 and 34,879 species as parasites and free-living, respectively, and predict states for over ~2.3 million (97.34%) leaf nodes without state information. We estimate the accuracy of our maximum parsimony based predictions using cross-validation and simulation at roughly 60-80% overall, but strongly varying between clades. The cross-validation resulted in an accuracy of 98.17% which is explained by the fact that the data are not uniformly distributed. We describe this variation across taxa as associated with available state and topology information. We compare our results with several smaller scale studies, which used manual expert curation and conclude that computationally inferred state changes largely agree in number and placement with those. In clades in which available state information is biased (mostly towards parasites, e.g. in Nematodes) phylogenetic prediction is bound to provide results contradicting conventional wisdom. This represents, to our knowledge, the first comprehensive computational reconstruction of the emergence of parasitism in eukaryotes. We argue that such an approach is necessary to allow further incorporation of parasitism as an important trait in species interaction databases and in individual studies on eukaryotes, e.g. in the microbiome.

Keywords

Castor, Global biotic interactions (GloBI), Ancestral state reconstruction, maximum parsimony, parasites, Open tree of life (OTL)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 3
  • 2
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
2
3
Green
gold