Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Wnt signaling promotes tumor development in part through phosphofructokinase 1 platelet isoform upregulation

Authors: So Mi, Jeon; Je Sun, Lim; Su Hwan, Park; Jong-Ho, Lee;

Wnt signaling promotes tumor development in part through phosphofructokinase 1 platelet isoform upregulation

Abstract

The activation of Wnt signaling has been detected in various types of human cancer and has been shown to be associated with cancer development. In the present study, it was revealed that Wnt signaling induced the expression of phosphofructokinase 1 platelet isoform (PFKP), which has been reported to catalyze a rate‑limiting reaction in glycolysis and is important for the Warburg effect, proliferation, colony formation and cancer cell migration. Moreover, it was demonstrated that Wnt3A induced PFKP expression in a β‑catenin‑independent manner, resulting in increased PFK enzyme activity. Wnt3A‑induced epidermal growth factor receptor transactivation activated PI3K/AKT, which stabilized PFKP through PFKP S386 phosphorylation and subsequent PFKP upregulation. Wnt3A‑induced PFKP S386 phosphorylation increased PFKP expression and promoted the Warburg effect, cell proliferation, colony formation and the migratory ability of cancer cells. On the whole, the findings of the present study underscore the potential role of PFKP in Wnt signaling‑induced tumor development.

Related Organizations
Keywords

Skin Neoplasms, Phosphofructokinase-1, Breast Neoplasms, Up-Regulation, Phosphatidylinositol 3-Kinases, Cell Movement, Cell Line, Tumor, Humans, Phosphorylation, Wnt Signaling Pathway, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!