
Carnosine is a vital endogenous dipeptide that has anti‑inflammatory, antiaging, anti‑crosslinking, antitumor and immune regulatory effects. Numerous cell and animal model studies have proved that carnosine and its compounds promote the proliferation and differentiation of osteoblasts, inhibit osteoclasts and protect chondrocytes. They also regulate the cell cycle of bone progenitor cells and the differentiation of bone marrow mesenchymal stem cells, accelerate fracture healing, delay bone tumor development and ameliorate osteopenia induced by estrogen deficiency or disuse. The correlations between carnosine and activation signal molecules, pluripotent differentiation of bone marrow mesenchymal stem cells and interaction between bone cells are unclear. However, studies have proved that carnosine and its compounds have benefits in preventing and treating specific bone diseases. This makes them potential agents for the treatment of osteoporosis and bone tumors. The present review summarized the existing research on carnosine and its compounds in bone cells and tissue. It focused on the physiological function of carnosine and its compounds in the bone and their effect on bone metabolism‑related diseases, thus providing support for developing new strategies for targeted therapy.
Osteoblasts, Carnosine, Animals, Osteoclasts, Mesenchymal Stem Cells, Cell Differentiation, Review
Osteoblasts, Carnosine, Animals, Osteoclasts, Mesenchymal Stem Cells, Cell Differentiation, Review
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
