
γδ T cells are a subset of unconventional T cells that serve a critical role in infectious diseases and various types of cancer. Cell therapy with genetically‑modified γδ T cells is regarded as a promising tool for tumor treatment. However, since γδ T cells constitute a minority of T cells, their large‑scale expansion is difficult to realize in an efficient and cost‑effective manner. In the present study, based on previous studies, culture protocols for γδ T cells were tested using different combinations of isopentenyl pyrophosphate and interleukin 2 in order to satisfy different experimental purposes. One protocol was demonstrated to be the most suitable for lentiviral transduction. These results greatly reinforce the promising prospects of using γδ T cells in basic research and for clinical applications.
T-Lymphocyte Subsets, Transduction, Genetic, T-Lymphocytes, Lentivirus, Cell Culture Techniques, Cell- and Tissue-Based Therapy, Humans, Receptors, Antigen, T-Cell, gamma-delta, Articles, Cell Proliferation
T-Lymphocyte Subsets, Transduction, Genetic, T-Lymphocytes, Lentivirus, Cell Culture Techniques, Cell- and Tissue-Based Therapy, Humans, Receptors, Antigen, T-Cell, gamma-delta, Articles, Cell Proliferation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
