Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Chemica Scandin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Chemica Scandinavica
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Radical Reactivity of Radical Ions in Solution. Radical--Radical and Radical--Substrate Coupling Mechanisms.

Authors: Vernon D. Parker; Massimo Bietti; Marina I. Ferrero; Cesare Rol; Giovanni V. Sebastiani; George W. Francis; József Szúnyog; +1 Authors

Radical Reactivity of Radical Ions in Solution. Radical--Radical and Radical--Substrate Coupling Mechanisms.

Abstract

The linear sweep voltammetry response to competitive radical ion-substrate coupling and radical ion dimerization mechanisms was determined by digital simulation. The simulations were carried out to mimic the conditions under which experimental studies had previously shown that the radical ion-substrate coupling mechanism is the preferred reaction pathway. It was observed that in order for the dependence of the peak potential on substrate concentration (delta Ep/delta log CA) to be in the experimentally observed range (36-40 mV/decade) that the relative rate constants for radical ion substrate coupling and radical ion dimerization (ki/kii) must be greater than about 10. It is pointed out that since the reactants, the transition states and the products differ by only a single electron that these competitive reactions represent an ideal test case for the configuration mixing (CM) model. The CM model predicts an electronic reaction barrier for reaction (i) but not for reaction (ii). The difference in standard free energy changes for reactions (i) and (ii) were estimated to be of the order of 7 kcal mol-1 or greater with (ii) being energetically more favorable than (i). It is concluded that the experimental data for the relative rates of reactions (i) and (ii) do not conform to the CM model predictions in the cases discussed. ArH(.+) + ArH-->+ ArH-ArH.(i) ArH(.+) + APH .+ --> + ArH-ArH+(ii).

Related Organizations
Keywords

Anions, Free Radicals, Molecular Conformation, Binding, Competitive, Styrenes, Solutions, Kinetics, Models, Chemical, Cations, Thermodynamics, Computer Simulation, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Average
gold