
arXiv: 2312.08431
Abstract Motivated by recent measurements of the free-floating-planet mass function at terrestrial masses, we consider the possibility that the solar system may have captured a terrestrial planet early in its history. We show that ∼1.2 captured free-floating planets with mass strictly greater than that of Mars may exist in the outer solar system, with a median predicted distance of ∼1400 au. If we consider a logarithmic bin centered on the mass of Mars, rather than a cutoff, we find that ∼2.7 captured free-floating planets with mass comparable to Mars may exist in the outer solar system. We derive an expectation value of ∼0.9 for the number of captured free-floating planets with mass comparable to that of Mars (∼1.4 for mass comparable to that of Mercury) that are currently brighter than the 10 yr coadded point-source detection limits of the Vera C. Rubin Observatory's Legacy Survey of Space and Time. Blind shift-and-stack searches could potentially enable the detection of such a planet if it is currently in the Southern sky. The theoretical argument presented here does not rely on the existence of posited patterns in the orbital elements of small bodies in and beyond the Kuiper Belt, in contrast with other hypothetical outer-solar-system planets motivated in recent years.
QB460-466, Earth and Planetary Astrophysics (astro-ph.EP), Planetary dynamics, Astrophysics of Galaxies (astro-ph.GA), Free floating planets, FOS: Physical sciences, Astrophysics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Earth and Planetary Astrophysics
QB460-466, Earth and Planetary Astrophysics (astro-ph.EP), Planetary dynamics, Astrophysics of Galaxies (astro-ph.GA), Free floating planets, FOS: Physical sciences, Astrophysics, Astrophysics - Astrophysics of Galaxies, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
